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A mechanical sweep method is formulated. Using the calculation of the non-linear deformation of a 

cylindrical panel as an example, an algorithm is developed that transfers the boundary conditions 

expressed in terms of mechanical parameters over the elements into which the panel is decomposed. 

The validity of the algorithm is confirmed by the agreement between numerical results and 

experimental data. 

Sweep methods are based on transferring the boundary conditions in the numerical solution of 
differential equations [l, 21. Compared to other numerical methods, such as finite-element 
methods, the advantages of the sweep method are the specification of a smaller number of 
unknowns (only on the boundary), and simpler algorithmization. However, in previously- 
known versions of the sweep method the differential equations are solved numerically 
separately from the mechanical parameters of the problem, and one loses a number of ways of 
further improving the method. 

When calculating the stress-strain state of shell structures the sweep method is easily 
implemented using the strain consistency condition in the form of cross-over couplings [3]. 

Sweeping using mechanical parameters has advantages when solving non-linear structural 
deformation problems. Taking into account the change in the direction of the force factors 
under strain, one can determine the non-linear dependence of the load on the displacements. 

The purpose of this paper is to develop a mechanical sweep method in which the transfer of 
the boundary conditions from one element of the structure to another is performed directly in 
terms of mechanical parameters: the forces, couples, angles of rotation and displacements. 

1. STATEMENT OF THE PROBLEM 

We will consider the sweep method using the example of the two-dimensional case of large 
displacements of a rigidly clamped cylindrical square panel. The panel is of width b, radius R 
and thickness h, and is loaded with a pressure q (Fig. 1). We introduce a system of cylindrical 
coordinates U,Qcp. We mentally divide the panel by lines along n intervals of generators of the 
cylinder parallel to 4 and perpendicular to it. The subscript i corresponds to sections parallel 
to the cylinder generator II, and the subscript j to sections perpendicular to the I1 axis. From 
the n* square elements of width II we select the one with the jth lowest and ith leftmost section 
(Fig. 2). 
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Fig. 1. 

Fig. 2. 
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In our algorithm we take the number of elements in the decomposition to be large. This 
enables us to assume the elements to be plane with a sufficient degree of accuracy. At each 
element we introduce a local system of coordinates OQZ . 

A variable stress distribution acts over each section of the panel element. According to the 
principles of rigid body mechanics their stressed state can be represented by forces concen - 
trated at the centre, and couples. The maximum number of force factors for a section element 
is six. As the element size decreases strain state can be, respectively, represented by six strain 
parameters at the centre. Because of the limited length of this paper we shall describe only the 
essence of the proposed method for the case of quadrilateral elements in which the sections 
parallel to the cylinder generators have four degrees of freedom, while the sections 
perpendicular to the generators have three degrees of freedom. 

In the given case of symmetric panel loading, for sections parallel to the cylinder generators 
(parallel to the local Oy axis) we shall take into account the bending moment M” about the 
middle line, a twisting moment K”, a shearing force @, and a normal force N’. We denote 
the angle of rotation in the M’ direction by p’, the angle of rotation from the twisting moment 
by yx, the displacement in the direction of @ by IV”, and the displacement of the section in 
the direction N” by s”, respectively. 

The positive directions of the deformations are shown in Fig. 2. In sections parallel to the Ox 
axis we denote the bending moment by MY, the twisting moment by KY, the shearing force by 
Qy, and the corresponding displacements by Py, yy and WY. These force factors and 
deformations will be indexed with their corresponding section numbers. 

The distributed load q for the element is replaced by a force F concentrated at the centre of 
the element with 

F=qa* (1.1) 

2. FUNDAMENTAL EQUATIONS 

To construct an algorithm for the mechanical sweep method we shall use the following 
equations for the selected element. 

The equations of static eq~librium 

=k = - Ni:i + Njr,,,j = 0 

and physical equations based on Hooke’s law and the hypotheses for the straight normals for 
the element [3] 

Here E is Young’s modulus J, and J, are moments of inertia for bending (J, = J = 
J = ah3/12), p is Poisson’s ratio (p = 0.3), G = E/[2(1+p)], Jk is the moment of inertia [or 
twisting (J, = &zh’), and p, is a slowly-varying coefficient (pi =0.32 for a/h > 10). 
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We apply the deformation compatibility equations in the form of the cross-over coupling 
method [3]. At the centre of the element the displacements (WCX, WY) and angles of rotation 
P:, p,‘, yz, y: are equal if this centre is regarded as the end of a preceding element going along 
the x axis from one side, and the end of the orthogonal preceding element going along the y 
axis from the other side (Fig. 2). 

Note that the differential relations (2.2) are written for a two-dimensional stressed state of 
elementary pieces, and not of beams. Hence the beam terminology is a convention. 

The angles of rotation and displacements at the centre are found by integrating the elastic 
median line of the element and using the derivatives in relations (2.2). Here we move 
separately along the x axis from the left section (Fig. 2) towards the centre on the right, and 
along the y axis from the lower section upwards towards the centre of the element. For the 
element numbered (i,j) we obtain 

aK:j 
=Y,’ =Ylj +2cJk 

M.7j +fQTj -w,!j 
aK:‘. 

=yf =ytj +“’ 
2GJ, 

M;j+fQfj-pM[j =W,y= 

a2 
~EJ 

( 
M[j +%Q[j-W(j 

(2.3) 

3. THE MECHANICAL SWEEP METHOD ALGORITHM 

The conditions at the boundary of the element &, pi, y& W:, Wi, S,; depend on the 
parameters of the preceding elements. Sweeping with respect to mechanical parameters begins 
with the boundary conditions for a rigidly fixed panel, where they are equal to zero. 

For example, starting with the lower-left element of the plate, we express Mll, K&, Q.& from 
system (2.3) in terms of MC,, Kc,, Q;,,, A$ (Fig. 2). Below, the parameters of all elements will 
express unknown force factors on the left boundary of the panel Ml,, Kt,, Qtj, N<j and force 
factors on the upper boundary of the panel M&+1, K&+l, a&,+,. Having expressed the 
parameters of the last upper element, we pass to the next vertical element strip from left to 

right. 
When considering the subsequent elements the initial conditions at their boundaries are 

obtained by integrating along the elastic line of the element along the y axis 

S:j+* =P[j +& 
( 
2M,‘li +aQ<j +$F+zQfj -$Qi+l,j - 

(3.1) 
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and along the x axis. (Appropriate relations are obtained from (3.1) by cyclic permutation of 
the x and y indices.) 

Such relations are also obtained by using Mohr integrals. 
The central procedure of the sweep is the determination, for an arbitrary element numbered 

(i,]), of the force factors Mi+*, K,Y,,, Qi+, on the upper boundary (Fig. 2) in terms of the left 
lateral force factors M[,+l, K;j+l, e;,+l, N&, of the next higher element with number (i, j+l). 
To do this we find from system (2.1) the right lateral force factors iI4I*+IJ, K&, a+,,, at the 
element with number (i, j) in terms of the remaining force factors. We substitute them into 
system (3.1). We then construct the deformation consistency equations (2.2) for the next 
vertical element with number (i, j+ l), substituting into them the initial conditions &+,, y&+$, 
W;,$+I from system (3.1) of the preceding element. The solution of this system gives the 
functions of the parameters MG+I, Klj,I, Qc+I. 

We will describe the fundamental processes of the mechanical sweep method in matrix form. 
To this end we introduce the vector of unknown parameters on the left and upper boundaries 
of the panel, given by the column matrix 

X=tIM;f,,KIX,,Qit,,N,?,,...,M;f,,K(f,,Q;l,,N;n,MEn+,,Kil’n+,,QiS,+,.... (3.2) 

. . ..M~.,+,,K~,n+l,Q~,,n+,,FIJT 

The last component of vector (3.2) is given by a known function of the active force F. The 
algebraic value of the parameter with number k of the na=7n+l parameters (3.2) is 
determined by the scalar product of matrices of order mxm for which there is one non-zero 
unit element on the main diagonal with number k with the column-vector (3.2). For example 

0 0 . f * 

%I, = 0 1’. . . x (3.3) 
. . * . . 

Below, the force parameters and deformation parameters of all elements are expressed in 
terms of the vector (3.2). 

We write the force parameters at the upper boundary of the element numbered (i, 1) in the 
form 

u 

MtTj+l 0.0914 -0.21 0,2045 VLj 
I 

K{j+l = -0,021 0,818 -0,0472 V$j 

QT. 
l.j+I 5,49a-’ 1,17a-’ u -2,636’ V’ [ 

The intermediate functions Vy, Vi*‘, V,i,j are given by the matrix product 

II~‘~~~V~y~V~ilT~VII~~~~K~~~Q~~~M;fi~K~~~ 

Q&,Mtj+lt K~j+~*Q~j+~,s~j,Y~j,~i;.~B;+~,r;j+,~~~j+,,F~l’ 

The coefficient matrix has the form { = E./U-’ 

(3.4) 

(3.5) 

-5 1.2 -0,57a 

The force parameters at 
of boundary deformations 

0.6 0,3a 0,3 0.65 0 O-25 0 0 0 25 0 0,150 

00 IO 0,25a 0 0 -25 0 2500 0 (3.6) 
2.4 I.20 1.3 0 0.17a 0 125 0 -%$a-’ 46 0 Sga-’ 0,6a 

the lower boundary of the panel, taking into account the zero values 
&, y&, I+$, are determined by solving system (2.3) 
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(3.7) 

The intermediate functions v, V$‘, V3.O are expressed in terms of a matrix product 

ll$‘O, VYO, v;:,e11r zz v”~lM~l,~~,,Q~,.~~,,~ix,r.~~IIT (3.8) 

vo = 
0,lS 0,325 0 0 5 0 
0,5 0 0,125a5 00 
0,163 0 0,021a o,$, 0 E/Y’ 

The force factors at the right section of the element are determined from the equilibrium 
equations (2.1) together with expressions (3.4) 

MX r+l,j 0 1 2-‘a 1 0 a 0 0 -1 -2-*a 2-‘a 

Ki=t,j =I 02-1aOI 00-I 0 

Q,",l,j 
2-‘a 0 x 

0 01 0010 0 o-1 1 

Nix,l,j 000 0001 0 0 0 0 

(3.9) 

Substituting the force factors (3.4), (3.9) into expressions (3.1) and similar expressions with 
cyclic permutation of the x and y indices we find the values of the deformations at the upper 
and right sections of the element (Fig. 2): p:j+l, Y:~+~, 11$+1, p;+lj, Y;*,,,~, W;zlj, S,;,,,. 

Thus the boundary conditions at the lower and left sections of the element are transferred to 
the upper and right sections of the element. 

In going over to the next element of the panel, situated to the right of the element under 
consideration, to simplify the expressions the mecha~cal parameters have to be replaced by 
an equivalent system oriented along the axes of a new local system of coordinates O’n’y’z 
(Figs 1 and 2). Let ai,i be the angles between the element planes, defined by the geometry of 
the panel, Then the forces and displacements with respect to the coordinates of the right-hand 
element, distinguished by primes, are expressed in the form 

Q?’ 
r+l,j 

NZl,j 

W;::;,j = 

451,j 

Ai,j O I 
QA1.j 

Nix,l,j 

0 Ai:i %*.j 

Six+l.j 

9 Ai,j = (3.10) 

The moments and angular deformations M,?+l,j, K,xfl,j, p;+l,j, +Y,“,~,~ remain unchanged in the 
new system O’x’y’z’. 

Here the sweep over one element is now complete, and the above operations are performed 
for the next element along the vertical strip. After finishing this strip we pass to the next strip 
on the right, starting with the lowest element (Fig. 1). After reaching the upper boundary of 
the panel the parameters on it are entered into the vector of unknown parameters (3.2). In this 
case the action (3.4) is not performed. 

We determine the solving system of linear algebraic equations in the mechanical sweep 
method by the boundary conditions at the upper and right edges of the rigidly clamped panel 
These are 7n equations, which we represent by a colu~-matrix 
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7n unknowns can occur in each equation, written in order in (3.2). The last component of the 
vector (3.2), depending on the force F, determines the free terms of the system of equations. 
Solving the system of equations (3.11) we obtain the values of the unknown parameters (3.2) 
corresponding to the specified load q. Then, repeating from the beginning the above-listed 
actions of the two-dimensional sweep, we obtain an array of data-the internal force ,factors 
and deformations of the panel. Here the parameters are specified without resolution into the 
components of (3.2). 

In the present version of the sweep method the boundary conditions are transferred over a 
finite-element decomposition. One of the advantages which have led to the wide application of 
the finite-element method is the rapid convergence of errors to zero as the density of the 
decomposition grid is increased. Hence the proposed mechanical sweep method should be 
more accurate than previous sweep methods based on replacing derivatives in differential 
equations by finite differences, and which have the problem that the error increases as the grid 
step is reduced. 

To calculate panel deformations depending non-linearly on the pressure P, we use the 
successive loading method. We determine the growth of internal and boundary force factors 
and deformations by making small increments in the panel pressure q. The total values of the 
internal factors and displacements, which are denoted by a bar in what follows, are given by 
algebraic summation of the increments in these parameters with respect to the step number of 
the loading 

The active load-the pressure P on the panel, is found from the conditions for static 
equilibrium of the panel. To do this along the line of largest displacements, in this case along 
the middle generator, we mentally cut the panel (Fig. 3).. We introduce the I axis, parallel to the 
1, axis generating the cylinder and passing through the point of largest displacement of the 
panel-its centre. Then, from the equation of moments about the 1 axis, for example, for the 
left half of the panel, in which boundary force factors and pressure forces occur, we obtain 

(3.13) 

where H, is the moment arm of F (F = Pa’) aeplied to the centre of the element numbered (i, 
j) about the 1 axis; M,(vfj), Ml(r;2,+1,,), M,(Q,“,), M,(a), Ml<@,+,) are the moments of the 
boundary forces over half the panel about the 1 axis. 

There is then a new loading step q. 
The non-linear dependence of the pressure P on the displacement of the panel centre WC is 

basically determined by the moments of the longitudinal forces wtj, R&n+,j. Once the panel 
displacements reach its chord H (Fig. l), the force increments N;i reverse direction. 

The site of the 1 axis is chosen to be the place of largest panel displacements. Equation (3.13) 
is set up for that direction of the 1 axis for which P takes its lowest value. Applying this value of 
the total pressure P to the entire panel, we iteratively improve the values of the deformation 
and load for the remaining sections of the panel. 
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Fig. 3. 

4. EXAMPLES 

Calculations were performed for square titanium panels with the following data: b = 0.1 m; R = 1 m; 

h = 8 x lOa m; E = 9.46 x 10” N m-* (at a temperature of 2OO“C). 
Figure 4 gives the calculated dependence (the solid curve) and the experimental dependence (the 

dashed curve) of the panel pressure on the central displacement W,. Note their satisfactory agreement for 
initial non-linear deformations. 

The accuracy of the calculation for large panel displacements can be preserved by reducing the number 
of degrees of freedom in the section element in fours and threes to the maximum number of six. 

Figure 4(b) shows graphs of the distribution of the increase in longitudinal force N;, per unit length 

along a generator coinciding with the edge of the panel at the first stage of the loading (q = 4000 N m”) 
(curve 1) and for displacements exceeding the chord of arc of the panel (curve 2); a graph of the increase 

in the shearing force Ql,,,, p er unit length; and a graph of the panel displacements WLZn+L, along the 

median generators. It is clear that for the same increment of the pressure increases q the sign of Nt, 
changes when the panel displacements begin to exceed the chord of its arc. 

Known analytic solutions for a rigidly clamped panel are associated with major simplifications and at 
the sub-critical deformation level give even smaller stiffness values than experiments [4]. 

Performing the mechanical sweep method for the case of a rigidly clamped square plate when there is a 

sufficiently accurate analytic solution showed differences of less than 3% when the plate was discretized 
into 25 elements. this also confirms the reliability of the method proposed. 

5. MAIN RESULTS 

We give a definition of the algorithm as a version of the sweep method for calculating 
mechanical systems. 
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Fig. 4. 

The mechanical sweep method consists in transferring boundary conditions, expressed in 
terms of mechanical parameters, over the elements into which the mechanical system is 
provisionally decomposed. Here, having first solved the equations for a restricted number of 
unknowns inside each element on then eliminates unknown parameters throughout the entire 
mechanical system. 

When implementing this method on a computer the sweep parameters are conveniently 
specified in the form of three-dimensional arrays. The largest dimension of the array is equal to 
the dimensions for most parameters can be restricted to two. This enables one to separate out 
the construction onto a sufficiently large number of elements (-100) for working on 
microcomputers. 

The use of an algorithm based on formula (3.13) has promise for the solution of geometric- 
ally non-linear mechanical problems. In this algorithm the active load is determined from the 
equilibrium condition of the separated deformed system when summing the internal force 
factors. 

This method is primarily designed for calculating complex structures, such as bellows and 
aeroplane fuselage skins. It can also be generalized to three-dimensional problems. 
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